A Convolutional Approach for Misinformation Identification
نویسندگان
چکیده
The fast expanding of social media fuels the spreading of misinformation which disrupts people’s normal lives. It is urgent to achieve goals of misinformation identification and early detection in social media. In dynamic and complicated social media scenarios, some conventional methods mainly concentrate on feature engineering which fail to cover potential features in new scenarios and have difficulty in shaping elaborate high-level interactions among significant features. Moreover, a recent Recurrent Neural Network (RNN) based method suffers from deficiencies that it is not qualified for practical early detection of misinformation and poses a bias to the latest input. In this paper, we propose a novel method, Convolutional Approach for Misinformation Identification (CAMI) based on Convolutional Neural Network (CNN). CAMI can flexibly extract key features scattered among an input sequence and shape high-level interactions among significant features, which help effectively identify misinformation and achieve practical early detection. Experiment results on two large-scale datasets validate the effectiveness of CAMI model on both misinformation identification and early detection tasks.
منابع مشابه
BLIND PARAMETER ESTIMATION OF A RATE k/n CONVOLUTIONAL CODE IN NOISELESS CASE
This paper concerns to blind identification of a convolutional code with desired rate in a noiseless transmission scenario. To the best of our knowledge, blind estimation of convolutional code based on only the received bitstream doesn’t lead to a unique solution. Hence, without loss of generality, we will assume that the transmitter employs a non-catastrophic encoder. Moreover, we consider a c...
متن کاملMining Significant Microblogs for Misinformation Identification: An Attention-based Approach
With the rapid growth of social media, massive misinformation is also spreading widely on social media, such as microblog, and bring negative effects to human life. Nowadays, automatic misinformation identification has drawn attention from academic and industrial communities. For an event on social media usually consists of multiple microblogs, current methods are mainly based on global statist...
متن کاملSocial Anomia against the Backdrop of Misinformation/ Disinformation: A Cognitive Approach to the Multivalent Data in Cyberspace
The present study is an attempt to problematize the multivalent data in the cyberspace through the lenses of Wittgenstein’s analytic philosophy of language. Adopting this linguistic philosophy approach is aimed at exploring the dichotomous question of whether cyberspace is a possibility for social power or it is a contributory cause of communicative discontinuity and henceforth a possibility fo...
متن کاملNon-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کامل